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Abstract: In this paper, a neuro-fuzzy model in conjunction with particle swarm optimization (PSO) are used for calibration of soil param-
eters used within a linear elastic-hardening plastic constitutive model with the Drucker-Prager yield criterion. The neuro-fuzzy system is used
to provide a nonlinear regression between the deviatoric stress and axial strain (σd � ε) obtained from a consolidated drained triaxial test on
samples of poorly graded sand. The soil model parameters are determined in an iterative optimization loop with PSO and an adaptive network
based on a fuzzy inference system such that the equations of the linear elastic model and (where appropriate) the hardening Drucker-Prager
yield criterion are simultaneously satisfied. It is shown that the model parameters can be determined with relatively high accuracy in spite of
the limited insight gained by a single set of data. To verify the robustness of the technique, a second set of data obtained under different
confining pressures is then used in a separate run. The outcome shows a close match with the same order of accuracy. DOI: 10.1061/(ASCE)
GM.1943-5622.0000142. © 2012 American Society of Civil Engineers.
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Introduction

A variety of methods exist for calibration of soil model parameters
based on laboratory tests. The optimization method is an important
method used in the identification of geotechnical parameters used
in constitutive equations. Swarm intelligence approaches are power
tools for optimization of cost function. Many research works with a
wide range of applications can be found on this subject. Some of
these approaches that have direct applications to geomechanics are
mentioned here. For the identification of soil parameters Levasseur
et al. (2008) used genetic algorithms. Feng et al. (2006) used an
inverse technique for the determination of the parameters of visco-
elastic constitutive models for rocks based on genetic programming
and a particle swarm optimization (PSO) algorithm. Meier et al.
(2008) presented a concept for the application of PSO in
geotechnical engineering. For the calculation of deformations in
soil or rock, numerical simulations based on continuum methods
are widely used in the field of geoenvironmental engineering.
Schanz et al. (2006) applied PSO techniques to geotechnical field
projects and laboratory tests; namely, a multistage excavation and
the desaturation of a sand column. Zhao and Yin (2009) presented
a method for identification of geomechanical parameters using a
combination of a support vector machine, PSO, and numerical
analysis techniques. Finsterle (2006) examined the potential use
of standard optimization algorithms for the solution of aquifer

remediation problems in three-phase and three-component flow
and transport simulations of contamination plumes. As a different
aspect of parameter identification, Cui and Sheng (2005) deter-
mined the minimum parametric distance to the limit state of a strip
foundation by optimizing a reliability index.

In this paper, a triaxial test result is used in conjunction with a
typical elastoplastic constitutive model to arrive at the model
parameters using a PSO algorithm. The paper is organized in four
main sections: Introduction, Preliminaries (including the soil con-
stitutive model, PSO algorithm, and neuro-fuzzy model), Proposed
Method (including the experimental results), and Summary and
Conclusions.

Preliminaries

This section includes a necessary explanation of soil constitutive
modeling, the PSO algorithm, and the neuro-fuzzy model.

Soil Constitutive Modeling

The behavior of geologic material may be represented by several
classes of constitutive models, such as variable moduli and hyper-
elasic, hypoelastic, endochronic, and plasticity formulations (Chen
1994). Researchers who perform experiments and analyses on soil
that result in the existence of a plateau on the stress-strain curve and
the experimental observation that only one part of the strain is
reversible suggest that this framework should be used for constit-
utive modeling of soils. Plasticity-based models are the most
popular for geotechnical materials. The trend for plasticity-based
constitutive modeling of soil is to adopt a separate formulation
for cohesive and noncohesive soils. In addition, this framework
is well adapted to the introduction of constitutive models in
computation software based on the finite-element method.

The Drucker-Prager Yield Criterion
The Drucker-Prager yield criterion, formerly known as the ex-
tended von Mises yield criterion, forms the basis of one of the most
commonly used constitutive models for porous ductile materials
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that are weak in tension and can incorporate hardening because of
plastic volumetric strain.

The Drucker-Prager criterion can be perceived as an attempt to
create a smooth approximation to the Mohr-Coulomb surface in the
same manner as von Mises approximates Tresca (Zienkiewicz et al.
1999). The failure surface is a cone with a circular cross section as
shown in Fig. 1.

The Yield Function
In order to derive the elastoplastic stress-strain relationship, better
known as the constitutive equations, a number of concepts need to
be reiterated:
• The yield surface defines the boundary in the stress space on

which the behavior of a material becomes plastic (irreversible).
• The elastic domain defines the boundary in the stress space

interior to the yield surface; inside the elastic domain, strains
remain reversible.

• The yield function, the boundary of the elastic domain, is de-
fined in practice by a scalar function F of the stress tensor,
where FðσijÞ is the yield function. In the principle stress space
(σ11, σ22, σ33), the yield function FðσijÞ is given by

FðσijÞ ¼
ffiffiffiffiffi
J2

p
� αI1 � k ¼ 0 ð1Þ

where I1 and J2 = first invariant of the stress tensor σij and second
invariant of the deviatoric stress tensor sij, respectively, and

I1 ¼ σ11 þ σ22 þ σ33 ð2Þ

J2 ¼
1
6
½ðσ11 � σ22Þ2 þ ðσ11 � σ33Þ2 þ ðσ22 � σ33Þ2� ð3Þ

where α and k = material constants, which make the Drucker-
Prager circle coincide with the outer apices of the Mohr-Coulomb
hexagon at any section by relating the Coulomb material parame-
ters c and φ, which are the cohesion and angle of internal friction,
respectively (Mestat et al. 2008).

For the triaxial compression test (σ11;σ22 ¼ σ33), constants α
and k are

α ¼ 2 sinφffiffiffi
3

p ð3� sinφÞ ð4Þ

k ¼ 6c · cosφffiffiffi
3

p ð3� sinφÞ ð5Þ

The sign of the yield function defines the position of a given
stress state. Using the yield function, the elastic-plastic behavior
(loading criteria) and elastic behavior (unloading criteria) are
expressed as

8<
:

FðσijÞ < 0 : elastic behavior
FðσijÞ ¼ 0 and dF > 0 : elastic� plastic behavior
FðσijÞ ¼ 0 and dF < 0 : elastic behavior

ð6Þ

In the elastic state, for computation of total strain (ε) per stress (σ),
the following equation is defined:

dεij ¼ Ce · dσij ð7Þ

Eq. (7) is then expressed as

dσxx

dσyy

dσzz

dσxy

dσyz

dσxz

2
6666664

3
7777775
¼ E

ð1þ νÞð1� 2νÞ

1� ν ν ν 0 0 0
ν 1� ν ν 0 0 0
ν ν 1� ν 0 0 0
0 0 0 1�2ν

2 0 0
0 0 0 0 1�2ν

2 0
0 0 0 0 0 1�2ν

2

2
6666664

3
7777775

dεxx
dεyy
dεzz
dεxy
dεyz
dεxz

2
6666664

3
7777775

ð8Þ

where parameters E and ν = modulus of elasticity and the Poisson’s
ratio, respectively.

In the elastoplastic state, for computation of total strain rate (dε)
with respect to stress rate (dσ), the following equation is defined:

dεij ¼ dεeij þ dεpij ¼ ðCe þ CpÞ · dσij ð9Þ

The plastic strain increments are related to the flow rule. By
considering the associated flow rule, using of consistency condi-
tion, and defining parameter H, which is expressed as

H ¼ �
�∂F
∂εpij

�
T
� ∂F
∂σij

�
ð10Þ

and computing the H parameters, the plastic strain increment is
expressed as

dεpxx
dεpyy
dεpzz
dεpxy
dεpyz
dεpxz

2
6666664

3
7777775
¼ 1
H

∂FðσijÞ
∂σxx∂FðσijÞ
∂σyy

∂FðσijÞ
∂σzz∂FðσijÞ
∂σxy

∂FðσijÞ
∂σyz

∂FðσijÞ
∂σxz

2
666666666664

3
777777777775

∂FðσijÞ
∂σxx

∂FðσijÞ
∂σyy

∂FðσijÞ
∂σzz

∂FðσijÞ
∂σxy

∂FðσijÞ
∂σyz

∂FðσijÞ
∂σxz

h i

ð11Þ

Because εpij and H are interdependent, to obtain εpij, generally a
function must be assumed for their correlation. However, the
adopted optimization method here circumvents this by evaluating
H locally.
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Particle Swarm Optimization
Kennedy and Eberhart (1995) introduced the PSO algorithm for
the first time as a new population-based optimization technique
inspired by animal social behavior.

In the PSO algorithm, each individual particle flies in the search
space with a velocity that is dynamically adjusted according to its
own flying experience and its companions’ flying experiences.
The PSO algorithm possesses some attractive properties such as
memory and constructive cooperation between individuals. Thus,
it has more chances to fly into better solution areas more quickly
and discover a reasonable quality solution much faster, and no se-
lection and crossover operator exist (Kennedy and Eberhart 1995).
In Fig. 2(a), each particle is randomly positioned in the search space
and thus has its own position and initial velocity so any particle can
move to any part of the search space. This velocity is controlled by
the movement imposed on the particle, changing its spatial location
in search of a better performance. Therefore, with these movements
the particles converge to the optimum location in the search
space and all of the particles tend to move to a specific point
[see Fig. 2(b)].

Further explanation on the PSO algorithm and its usage in vari-
ous fields may be found in Mirghasemi et al. (2010). Here, PSO is
used for optimization of soil parameters over Drucker-Prager yield
criteria. Details of the search procedure with PSO are mentioned in
the next section.

Neuro-Fuzzy Inference System

Recently, there has been a growing interest in combining both these
approaches, and as a result, neuro-fuzzy computing techniques
have evolved. Neuro-fuzzy systems are fuzzy systems that use neu-
ral network theory to determine their properties (fuzzy sets and
fuzzy rules) by processing data samples (Mitra and Hayashi
2000). Neuro-fuzzy integrates to synthesize the merits of both
neural networks and fuzzy systems in a complementary way to
overcome their disadvantages. The fusion of a neural network
and fuzzy logic into neuro-fuzzy models yields low-level learning,
the computational power of neural networks, and the advantages of
high-level humanlike thinking of fuzzy systems. The adaptive net-
work based on fuzzy inference system (ANFIS) model combined
the neural network adaptive capabilities and the fuzzy logic quali-
tative approach initially introduced by Jang (1993).

In recent years, ANFIS has attained popularity because of
its adaptability in a broad range of useful applications in such
diverse areas as optimization of fishing predictions (Iglesias Nuno

et al. 2005), vehicular navigation (Noureldin et al. 2007), identifi-
cation of turbine speed dynamics (Kishor et al. 2007), radiofre-
quency power amplifier linearization (Lee and Gardner 2006),
microwave applications (Ubeyli and Guler 2006), image de-noising
(Qin and Yang 2007; Çivicioglu 2007), predictions in cleaning with
high-pressure water (Daoming and Jie 2006), sensor calibration
(Depari et al. 2007), fetal electrocardiogram (ECG) extraction from
ECG signals captured from the mother (Assaleh 2007), and
identification of normal and glaucomatous eyes (Huang et al.
2007). Also, previous works of the writers (Sadoghi Yazdi and
Pourreza 2010) in the field of ANFIS architecture on solutions
of ordinary differential equations, constraint modeling, and control
are available.

All of these works show that ANFIS is a good universal approx-
imator, predictor, interpolator, and estimator, and demonstrates that
ANFIS has the approximation capabilities of neural networks. Any
nonlinear function of several inputs and outputs can be easily con-
structed with ANFIS. The advantages of the ANFIS technique are
summarized as follows:
• Real-time processing of instantaneous system input and output

data. This property helps when using this technique for many
operational research problems.

• Offline adaptation instead of online system-error minimization;
thus, it is easier to manage and no iterative algorithms are
involved.

• System performance is not limited by the order of the function
because it is not represented in polynomial format.

• Fast learning time.

Fig. 1. Yield surface corresponding to the Drucker-Prager criterion

Fig. 2. Direct and velocity particles in the search space with three
features: (a) initial movement; (b) advance movement
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• System performance tuning is flexible as the number of mem-
bership functions and training epochs can be altered easily.

• The simple if/then rules declaration and the ANFIS structure are
easy to understand and implement.
On the other hand, numerous problems in science and engineer-

ing can be explained through a form of system identification or
regression. Basic methods can be achieved to identification prob-
lems and regression as neural networks and neuro-fuzzy models. In
this paper, the neuro-fuzzy model is used for system identification.

Proposed Method

The overall procedure for evaluation of the basic soil parameters
(i.e., E, ν, c, and φ) and other variables calculated during the pro-
cedure (such as the coefficients of the hardening law) are presented
in Fig. 3.

Initially, an ANFIS was used to arrive at a nonlinear regression
of the available test result. Then, the required parameters needed to
produce the results were randomly set and used in the simultaneous
solution of the Eqs. (1)–(11) for each increment of loading. The
solutions will produce errors (residuals) with respect to the ANFIS
model. If the amount of the error exceeded a predetermined cri-
terion (e.g., 1%) the parameters were reevaluated using PSO and
re-fed into the equations for a new solution. Further explanation
on each step of the algorithm is provided below.

ANFIS Model

Basically, the ANFIS model guides the search mechanism of PSO.
First, the stress generator produces deviatoric stresses within the
range of the experimental data. Then, the model predicts the appro-
priate strain (Fig. 4).

The structure of the ANFIS model is shown in Fig. 5, in which
the circles indicate fixed nodes, and the squares indicate adaptive
nodes. Considering inputs x and one output z in the fuzzy inference
system (FIS), the ANFIS implements a first-order Sugeno fuzzy
model. Among the many FISs, the Sugeno fuzzy model is the most
widely used because of its high interpretability, computational ef-
ficiency, and built-in optimal and adaptive techniques. For exam-
ple, for a first-order Sugeno fuzzy model, a common rule set with
two fuzzy if/then rules can be expressed as follows (where cluster
i ¼ 1;…; 5 are fuzzy sets in the antecedent as shown in Fig. 6 and
the parameters are determined during the training process):
• Rule 1: if deviatoric stress is Cluster 1, then z1 ¼ �2:212 and

deviatoric stress = 87.62.
• Rule 2: if deviatoric stress is Cluster 2, then z2 ¼ �117:4 and

deviatoric stress = 1:021 × 104.
• Rule 3: if deviatoric stress is Cluster 3, then z3 ¼ �37:48 and

deviatoric stress = 2,375.

• Rule 4: if deviatoric stress is Cluster 4, then z4 ¼ �41:6 and
deviatoric stress = 6,290.

• Rule 5: if deviatoric stress is Cluster 5, then z5 ¼ 0:001673 and
deviatoric stress = �9:277 × 10�6.
The ANFIS consists of five layers (see Fig. 5). In Layer 1, every

node i is an adaptive node with a node function

O2
i ¼ μAi

ðxÞ0 i ¼ 1;…; 5 ð12Þ

where x = input of node i, and μAi
ðxÞ can adopt any fuzzy member-

ship function (MF). Here, Gaussian MFs are used as follows:

Gaussian ðx; c;σÞ ¼ e�ð1∕2Þ½ðx�cÞ∕σ�2 ð13Þ
where c = center of Gaussian membership function and
σ = standard deviation of this cluster as shown in Table 1.

In Layer 2, every node represents the ring strength of a rule by
multiplying the incoming signals and forwarding the product as

O2
i ¼ ωi ¼ μAi

ðxÞ i ¼ 1;…; 5 ð14Þ

In Layer 3, the ith node calculates the ratio of the ith rule’s ring
strength to the sum of all rules’ ring strengths

O3
i ¼ �ωi ¼

ωiX
5
j¼1

ωj

i ¼ 1;…; 5 ð15Þ

where �ωi = normalized ring strengths. In Layer 4, the node function
is represented by

Fig. 3. Proposed structure

Fig. 5. ANFIS architecture [Π, N, and Σ are defined in Eqs. (15), (16),
and (18), respectively]

Fig. 4. ANFIS model of stress per strain
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O4
i ¼ �ωiZi ¼ �ωiðpixþ riÞ; i ¼ 1;…; 5 ð16Þ

where �ωi = output of Layer 3, and {pi; ri} = aforementioned param-
eter rule set and is shown in Table 2. The parameters in this layer
are referred to as the consequent parameters.

In Layer 5, the single node computes the overall output as the
summation of all incoming signals as follows:

O5
i ¼

X5
i¼1

�ωizi ¼
X

5
i¼1

ωiziX
5
i¼1

ωi

ð17Þ

It is seen from the ANFIS architecture that when the values of the
premise parameters are fixed, the overall output can be expressed as
a linear combination of the consequent parameters

z ¼ �ω1p1xþ �ω1r1 þ �ω2p2xþ �ω2r2 þ � � � þ �ω5p5xþ �ω5r5 or

z ¼ ðω1p1 þ ω2p2 þ � � � þ ω5r5Þxþ ðω1r1 þ ω2r2 þ � � � þ ω5r5Þ
ð18Þ

The hybrid learning algorithm (Jang 1993; Depari et al.
2007), which combines the least-squares method and the back-
propagation (BP) algorithm, can be used to solve this problem. This

algorithm converges much faster because it reduces the dimension
of the search space of the BP algorithm. During the learning pro-
cess, the premise parameters in Layer 1 and the consequent param-
eters in Layer 4 are tuned until the desired response of the FIS is
achieved. The hybrid learning algorithm has a two-step process.
First, while holding the premise parameters fixed, the functional
signals are propagated forward to Layer 4, where the consequent
parameters are identified by the least-squares method. Second, the
consequent parameters are held fixed while the error signals (the
derivative of the error measure with respect to each node output)
are propagated from the output end to the input end, and the prem-
ise parameters are updated by the standard BP algorithm.

Noise Robustness

One of abilities of the ANFIS model is noise robustness, which can
be discovered with signal-to-noise ratio (SNR) in the following
form:

SNR ¼ 20 log

�
Ds

Dn

�
ð19Þ

where Ds = signal domain and Dn = noise domain. Fitting the op-
eration with different SNRs is compared with the noiseless condi-
tion. Fig. 7 shows the 46 dB noisy condition and the noiseless state.
Also, the error between the base curve (noiseless condition) and the
fitted curve in the noisy condition is defined as

ESNR ¼ 1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

½ZbðiÞ � ZSNRðiÞ�2
s

ð20Þ

where ESNR = error when comparing the base output [ZbðiÞ] and
the output in the noisy condition [ZSNRðiÞ]; L = length of signal;
and n = number of the sample entered into the error calculation.

The results confirming the robustness of the ANFIS model
against noise are shown in Fig. 8. Also, for example, when SNR ¼
10 dB or the domain of noise is 60%, the signal domain obtained
error is 11%. In this example, training samples are shown in Fig. 9.
The result of the fitting procedure by ANFIS is shown in Fig. 10.

Fig. 6. Fuzzy sets of input variables [degree of membership per deviatoric stress (kPa)]

Table 1. Center and Standard Deviation of Gaussian Membership
Function

Cluster 1 2 3 4 5

Deviatoric stress

(standard deviation)

10.1 10.09 10.09 10.09 10.09

Center 77.5 87.69 95.72 101.3 45.7

Table 2. Parameter Set of Lines {pi, ri}

Cluster 1 2 3 4 5

pi �2:212 �117:4 �37:48 �41:6 0.001673

ri 87.62 10210 2375 6290 �9:3E-06
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The observed data from the triaxial test and the neuro-fuzzy model
are shown in Fig. 11.

Solving with PSO

In this section, the method for evaluation of the soil parameters
used in the aforementioned elastoplastic model with the PSO search
algorithm in conjunction with the ANFIS model is introduced. The
overall structure of the algorithm in the form of an iterative con-
vergence loop is schematically shown in Fig. 12.

To evaluate an increment of the axial strain with respect to the
deviatoric stress increment, the vector of the main parameters xi ¼
½x1; x2; � � � ; x5�T ¼ ½φ;E; ν; c;σr�T is fed into the constitutive equa-
tions. If the load increment did not cause plastic straining, the
calculations remained within the bound of elasticity and only
the appropriate parameters were evaluated. However, when plastic

Fig. 7. Comparison of the fitting operation in the noiseless environment and the 46 dB noisy condition

Fig. 8. Estimated error under different noise conditions

Fig. 9. Training samples for the SNR ¼ 10:2 dB condition

Fig. 10. Fitted curve in the SNR ¼ 10 dB condition
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straining did occur, Eqs. (9)–(11) were also invoked and, in doing
so, the hardening parameter needed to be locally evaluated.

The estimated values of the strains were compared against
the model produced by ANFIS, the error was evaluated, and the
outcome was dealt with according to the acceptance criterion. If
the outcome had an unacceptable error, the following procedure
(Fig. 13), which included six main steps, was carried out to arrive
at a better answer:
1. Initialization of PSO;
2. Evaluation of particle position and velocity updating;
3. Velocity weight adaptation;
4. Personal and global best location;

5. Location particles adaptation and constraint parametric
checking; and

6. End of condition checking.
The PSO algorithm will be described in the following section.

Initialization PSO and Definition
The initialization position (particle X) and associated velocity
(particleij · v) of all particles were randomly set to within pre-
specified values in the feasible region where particleij · X ¼ ½xi�
(see Fig. 3). particleij · v is the velocity of any particleij · X. The best
state of the ith particle in the jth iteration is represented by the
particleij · best structure and the best particle in the population is
represented by bestj · particle.

Evaluate Error Index
Evaluation of the error index (total error value) of all particles was
done with the following error function:

EPSO ¼ 1
m

Xm
i¼1

ðεðANFISÞ � εðPSOÞÞ2 ð21Þ

where m = number of particles; εðANFISÞ = strain obtained by the
ANFIS model; and εðPSOÞ = strain obtained by feeding the PSO
determined parameters into the set of constitutive equations.

Personal and Global Best Position
particleij · best represents the minimum error value of the nth par-
ticle. The particleij · best error of each particle was compared with
the current total error value calculated by Eq. (21). If the current
total error value was less, the current error value was assigned to the
particleij · best · error least error and the current coordinates were
assigned to particlei · best · X. In a similar way, the least error value
in the entire population and its coordinates can be determined. If the
current error is less than the best particle, then assign the current
coordinates to the best particle and assign the current error value to
particleij · best · error, where the best particle represents the best
particle in the total population.

Velocity Weight Adaptation
The velocity weight can be changed using the following rule:

particleijþ1 · v ¼ αp × particleij · vþ C1 × U1

× ðparticleij · best · X � particleij · XÞ þ C2 × U2

× ðbestj · particle · X � particleij · XÞ ð22Þ

where C1 ¼ C2 ¼ 0:5 = factors used to control the related weigh-
ing of corresponding terms;U1 andU2 = random variables from the
range [0,1]; αp = parameter controlling the dynamics of flying; and
the balance between the global and local search is adjusted through
the parameter αp ∈ ð0;∞Þ.
Position Particle Adaptation and Constraint Parametric
Checking
Change the position using the following rule:

particleijþ1 · X ¼ particleij · X þ particleij · v ð23Þ

After updating the model, particleijþ1 · X would also be checked and
clamped to the legal range to ensure a legal solution; if a particle
was removed from the feasible region, then it would be returned to
the border of the feasible region.

End of Condition Checking
Repeat Steps 2–6 until a stop criterion is satisfied or a predefined
number of iterations is completed. This algorithm is run twice, once

Fig. 11. Results of the neuro-fuzzy model

Fig. 12. Simple form of the proposed method

Fig. 13. PSO algorithm for soil parameter optimization
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to calculate Eq. (1) until the Eq. (11) result of the above algorithm
is xi ¼ ½x1;…; x5�T .

Determination of the Soil Parameter with PSO

The test result was initially simulated with a limited number of
particles (i.e., 100). This produced a stress-strain curve with large
inaccuracies [see Fig. 14(a)]. Thus, the number of particles was
increased to 1,500 (vectors), which produced a very close fit
[see Fig. 14(b)]. The obtained parameters using PSO that would
simulate the above behavior are shown in Table 3.

To provide another angle to the procedure, the data from a
second test on the same sand with a confining pressure of
100 kPa were also used to calibrate the model parameters. The
outcome was very close to the first run, with the same order of
accuracy.

The results of the ANFIS model together with the PSO
simulation for the second test are shown in Fig. 15 and the outcome
of the analysis is presented in Table 4. It can be seen that in spite of
the notable discrepancy in the prediction of the confining pressure
the technique is capable of capturing the essence of the test
condition.

Fig. 14. (a) PSO search step; (b) developed search procedure using PSO

Table 3. Estimated Values of the Model Parameters

Model Internal friction angle ðφÞ Module of elasticity Poisson ratio ðυÞ Cohesion Radial stress

PSO derived 30.31° 300.013 kPa 0.35 0.192 kPa 25.017 kPa

Experiment 36.38° Not measured Not measured 0 50 kPa
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Summary and Conclusions

Calibration of constitutive models requires close examination of
extensive experimental data. Even then, some of the more intricate
parameters deployed in the more advanced and complicated models
cannot simply be correlated to any experimentally measured prop-
erties and often simplifying assumptions have to be made.

The technique described in this paper has proven its capabilities
as an identification procedure in many fields, including geome-
chanics. However, its versatility in calibration of model parameters
as well as peripheral variables from the very basic and minimal
experimental data can be viewed as a potent tool in the development
of constitutive models. This capability was demonstrated using a
simple model with the most meager data. Obviously, further explo-
ration of the technique with more extensive data can lead to better
approximations for more complex models.

Notation

The following symbols are used in this paper:
Dn = noise domain;
Ds = signal domain;
E = module of elasticity;

EPSO = error function of PSO;
ESNR = error of SNR;

I1 = first invariant of stress tensor;
J2 = second invariant of deviatoric stress tensor;
k = material constant;
L = length of signal;
m = number of particle;
n = number of sample;

pi; ri = parameter set of lines;

U1;U2 = random variables;
ZbðiÞ = base output;

ZSNRðiÞ = noisy condition;
α = material constant;
αp = parameter controlling the dynamics of flying;

εðANFISÞ = strain obtained by ANFIS model;
εðPSOÞ = strain obtained by feeding PSO;

εPij = plastic strain tensor;
μAi

ðxÞ = Gaussian membership function;
v = Poisson ratio;

σij = stress tensor; and
�ωi = normalized ring strength.
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